Unveiling the Hidden Costs:

THE CLINICAL AND ECONOMIC IMPACT OF FALSE-POSITIVE BLOOD CULTURES

Tuesday, January 21, 2025

Guest Speakers

Anna Crum

Solution Manager Cardamom Health

Colleen Humphrey

Senior Manager, Magnolia Analytics Magnolia Medical Technologies

© 2024 Magnolia Medical Technologies® All rights reserved. Confidential and proprietary.

M

Learning Objectives

- Provide a brief overview of the downstream negative impacts of blood culture contaminations
- Review the pilot outcomes of blood culture contamination reduction with an Initial Specimen Diversion Device^(R)
- How the study conducted at a large, multi-hospital health system demonstrated the irrefutable impact, clinically and economically, of patients that received a false positive blood culture result in comparison to patients who received a true negative result

The Problem & Challenge

Blood Culture Contamination

2024 Magnolia Medical Technologies® All rights reserved. Confidential and proprietar

Sepsis is the **#1** cause of **death**, **readmissions**, and **costs** in U.S. hospitals

... and blood cultures remain the gold standard for diagnosing this disease

¹Liu V, Escobar GJ, Greene JD. Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA. 2014;312(1):90-92. doi:10.1001/jama.2014.5804.

²Weiss AJ, Jiang HJ. Overview of clinical conditions with frequent and costly hospital readmissions by payer, 2018. HCUP Statistical Brief #278. July 2021. Agency for Healthcare Research and Quality, Rockville, MD.

Of all positive blood cultures

On average, **40%** to over **50%** of positive blood culture results are **FALSE POSITIVE**

© 2024 Magnolia Medical Technologies® All rights reserved. Confidential and proprietary

Hospital Economic Implications of False Positive Blood Cultures

Journal of Hospital Medicine

> THE AMERICAN JOURNAL *of* MEDICINE.

JAMA	The Journal of the American Medical Association
------	--

Publication	Attributable Incremental Hospital Costs	Extended Length of Stay
Infection Control and Hospital Epidemiology (2022) ¹	\$2,853 [*]	1.3
Journal of Hospital Infection (2019) ²	\$4,817	2.4
Journal of Clinical Microbiology (2019) ³	\$4,739	2.0
Journal of Hospital Infection (2011) ⁴	\$3,405 [*]	5.4
Journal of Clinical Microbiology (2009) ⁵	\$4,142 [*]	1+
Journal of Hospital Medicine (2006)6	\$3,647 [*]	3.0
The American Journal of Medicine (1999) ⁷	\$6,319 ^{**}	2.0
Clinical Performance Quality Healthcare (1998) ⁸	\$3,962 [*]	8.4
Journal of American Medical Association (1991) ⁹	\$3,303 [*]	4.5
The American Journal of Medicine (1989) ¹⁰	\$4,431 [*]	4.2
Average Cost Per False-Positive Event	\$4,162	3.4 days

1. Klucher J, Davis K, Lakkad M, Painter JT, Dare RK. Risk factors and clinical outcomes associated with blood culture contamination. Infect Control Hosp Epidemiol. 2022;43(3):291-297. doi:10.1017/ice.2021.111. 2. Geisler BP, Jig N, Patton RG, Pietzsch JB. Model to evaluate the impact of hospital-based interventions targeting false-positive blood cultures on economic and clinical outcomes. J Hosp Infect: 2019;102(4):438-444. doi:10.1016/jihin.2019.003.012.3. Skoglund E, Dempsey CJ, Ohen H, Garey KW. Estimated clinical and economic impact through use d'a novel blood culture on transmination in the emergency department a cost-benefit analysis. J Clin Microbiol. 2009;7(1):e01015-18. 4. Akharded M, McElnay JC, et al. Clinical and economic impact of contamination in the emergency department a cost-benefit analysis. J Clin Microbiol. 2009;7(1):e01015-18. 4. Akharded M, Microbiol. 2009;7(1):e01015-18. 4. Akharded M, McElnay JC, et al. Clinical and economic impact of contamination in the emergency department. J Clinikorobiol. 2009;7(1):e01015-18. 4. Akharded M, Microbiol. 2009;7(1):e0105-10:e017;7(

Pilot Study Outcome Steripath® Initial Specimen Diversion Device®

2024 Magnolia Medical Technologies® All rights reserved. Confidential and proprietary

A 6 Month Pilot Using an Initial Specimen Diversion Device^(R)

Pilot completed in 3 of the EDs within the health system

The Health System

- 10+ hospitals
- 2,000 staffed beds across the entire system
- >60,000 blood cultures performed annually

Baseline Contamination Rate

 Pre-Steripath^(R) baseline contamination rate above the national above of 3%

Pilot Results

A contamination rate of less than 1%

Blood Culture Contamination Rates

Reduction in Contamination Rates since Implementing Steripath

Pre-Steripath Baseline Rate: 3.65%

Non-Steripath Rate: *BCC% on draws where Steripath was not used* Blended Rate: *BCC% for both non-Steripath and Steripath draws combined* Steripath Rate: *BCC% for Steripath draws only*

The Patient Impact

*Projected # of False Positives calculation: Baseline BCC% * total blood cultures performed during pilot *False Positives Avoided calculation: Projected false positives – (total blood cultures performed during pilot * pilot blended rate)

© 2024 Magnolia Medical Technologies® All rights reserved. Confidential and proprietary.

Pilot Summary

October 1, 2022 - March 31, 2023

- 2.45% blended rate, 32% reduction from 3.65% baseline
 - 0.96% Steripath only rate, 74% reduction
 - **135** avoided false-positives during pilot period
- **\$561,870** in cost savings *based on cost of contamination of \$4,162*

Based on the efficacy proven during the pilot, Steripath would be the catalyst to < 1.0% BCC system wide

A Comprehensive Data Analysis of Blood Cultures

12-month study results January 1, 2023 – December 31, 2023

© 2024 Magnolia Medical Technologies® All rights reserved. Confidential and proprietal

Compared False-Positive (case event) to True Negative (control event)

Total Profit Loss Per False-Positive

Each false-positive event incurred an average **total profit loss of \$1,617** to the health system - factoring in both care delivery costs and <u>received</u> reimbursements.

Despite higher reimbursement for False Positives, increased cost of care leads to loss of \$940 per patient

Avg Per Event	False-Positive	True Negative	Difference (FP - TN)	
Event Count	1,562	27,061	N/A	Total lost profit per blood culture contamination event = \$1,617
Avg Total Charges ¹	\$85,774	\$55,979	\$29,795	
Avg Total Costs ²	\$22,267	\$14,478	\$7,789	
Avg Total Expected Payment ³	\$22,048	\$16,007	\$6,041	
Avg Total Payment ⁴	\$21,327	\$15,155	\$6,172	
Margin (Payment - Costs	s) ⁵ -\$940	\$677	-\$1,617	

¹Total charges posted to the Hospital Account for the patient encounter during which the blood culture was taken.

²Total costs calculated using a CCR of 0.277, except for medications, whose cost data is stored within Epic.

³Total expected payment based on the expected reimbursement calculated by the contract logic stored within Epic.

⁴Total payments posted to the Hospital Account (from insurance or self-pay) for the patient encounter during which the blood culture was taken.

⁵Margin, also referred to as profit, represents the difference between revenue (payments) and costs.

Blood Culture Contamination False Positive vs. True Negative Result

Costs calculated using the total charges for the account and multiplying by an estimated Cost-to-Charge Ratio of .2771

¹Cost-to-Charge Ratio was estimated based on the FY2 1 Medicare Cost Report.

²Epic stores cost data for medications (whereas other cost data is typically in disparate systems). To a chieve maximum precision, medication costs were directly queried the healthcare system's database, which aggregates data from Epic, rather than using the CCR for calculations.

Hospital Health Blood Culture Contamination Case vs. Control Results

Detailed Breakdown of Lab and Medication Costs Attributable to Blood Culture Contamination

¹Medication costs were directly queried from the Hospital Qlikview database, which aggregates data from Epic, rather than using the CCR for calculations. ²Lab costs were determined using a CCR of .277

Blood culture contamination not only impacts the bottom line but also impacts patient safety

Questions?

Contact Cardamom

Cardamom@cardamom.health

www.Cardamom.Health

Contact Magnolia Medical Technologies

Info@magnolia-medical.com

Magnolia-medical.com